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Abstract

This paper presents a highly effective pipeline
for passage retrieval in a conversational search
setting. The pipeline comprises of two com-
ponents: Conversational Term Selection (CTS)
and Multi-View Reranking (MVR). CTS is re-
sponsible for performing the first-stage of pas-
sage retrieval. Given an input question, it uses
a BERT-based classifier (trained with weak su-
pervision) to de-contextualize the input by se-
lecting relevant terms from the dialog history.
Using the question and the selected terms, it
issues a query to a search engine to perform
the first-stage of passage retrieval. On the
other hand, MVR is responsible for contex-
tualized passage reranking. It first constructs
multiple views of the information need embed-
ded within an input question. The views are
based on the dialog history and the top doc-
uments obtained in the first-stage of retrieval.
It then uses each view to rerank passages us-
ing BERT (fine-tuned for passage ranking). Fi-
nally, MVR performs a fusion over the rank-
ings produced by the individual views. Exper-
iments show that the above combination im-
proves first-state retrieval as well as the over-
all accuracy in a reranking pipeline. On the
key metric of NDCG@3, the proposed com-
bination achieves a relative performance im-
provement of 14.8% over the state-of-the-art
baseline and is also able to surpass the Oracle.

1 Introduction

The abilities of current conversational assistants
(Alexa, Cortana etc.) to perform open-domain con-
versational information seeking (CIS) functions are
limited (Dalton et al., 2019). Thus, to encourage
and support research on conversational informa-
tion seeking, the TREC Conversational Assistance
Track (CAsT) (Dalton et al., 2019) defined a model
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Title: goat breeds
Description: Interested in buying goats that
implies interest in different breeds of goats and
their use (milk, meat, and fur).
Turn Utterance (Question)
1 What are the main breeds of goat?
2 Tell me about boer goats.
3 What breed is good for meat?
4 Are angora goats good for it?
5 What about boer goats?
6 What are pygmies used for?
7 What is the best for fiber production?
8 How long do Angora goats live?
9 Can you milk them?
10 How many can you have per acre?
11 Are they profitable?

Table 1: An example of a training topic in CAsT.
of conversational information seeking in which the
conversation is a sequence of related passage rank-
ing tasks, some of which require knowing the con-
versational history.

For example, the question “Can you milk
them?” in Table 1 is not by itself sufficient
to support effective retrieval; the conversational
context is required. More formally, given a
series of natural language utterances/questions
U = {u1, u2, u3 . . . un} based on a conversa-
tional topic T , the task is to retrieve relevant pas-
sages Pi for each utterance ui by conditioning on
the utterances/questions occurring prior to it, i.e
{u1, u2, . . . ui−1}. Note that, each utterance in the
conversation is essentially a question by itself.

CAsT questions pose a variety of problems for
a conversational information seeking system. To
begin with, the evolution of the conversation is ac-
companied by introduction of pronouns, which cre-
ates an under-specified (or missing) context within
the posed questions. Depending on the question,
the context markers might be explicit (pronouns) or



implicit (ellipsis). For example, in Table 1, turn 4
contains the pronoun ‘it’, which explicitly refers to
the term ‘meat’ in turn 3. On the other hand, turn 5
does not contain any explicit pronoun marker, but
implicitly questions whether ‘boer goats are good
for meat’ by grounding itself in turns 3 and 4.

One can think of coreference resolution as a spe-
cial case of context resolution. However, off-the-
shelf coreference models struggle with conversa-
tional questions (Dalton et al., 2019). Contextual-
ized questions lead to an ineffective representation
of the desired information need, causing a poor
retrieval of informative passages.

Recent (and relatively successful) attempts to
conversational search have focused on rewriting
the conversational questions into de-contextualized
questions that contain all the necessary informa-
tion. These de-contextualised questions are then
used for retrieval. For instance, one of the best per-
forming systems submitted to TREC CAsT was the
ATeam’s query rewriter which used a pre-trained
GPT-2 model (Radford et al., 2019) to rewrite ques-
tions. More recently, Yu et al. (2020) fine-tuned
GPT-2 using a large amount of ad-hoc search ses-
sions for rewriting questions.

However, the performance of the above methods
on passage ranking has a ways to go compared to
non-automatic methods where ground truth query
reformulations are used (Dalton et al., 2019). Both
automatic and non-automatic methods use standard
BERT (fine-tuned on passage ranking) for rerank-
ing passages. Thus, even if automatic query refor-
mulations are perfect, their overall passage retrieval
performance will have an upper bound which will
be equal to what the ground truth reformulations
can achieve. Also, the current automatic methods
do not aim to adapt the reranker to the conversa-
tional setting.

Similar to the idea behind pseudo-relevance feed-
back, this paper starts by motivating that going
beyond the ground truth question reformulations
by incorporating additional terms from the dialog
history and the top-retrieved passages (retrieved
during the first-round of retrieval), which might not
be present in the ground truth reformulations, can
help in improving passage retrieval. For example:
turn 6 in Table 1 is self-sufficient i.e there is no
need to reformulate it. However, adding the term
‘goat’ to the question can help in improving the
retrieval performance. At the same time, this paper
also aims to adapt the typical ad-hoc reranker to the

conversational setting by a simple means of data
fusion.

Adding to the above challenges, the TREC CAsT
dataset also has a limited number of training exam-
ples which might hinder the effective training of
models. Navigating through all the above presented
issues, this paper presents a ranking pipeline aimed
at improving the performance of passage retrieval
in a conversational setting. The entire pipeline con-
sists of two major components: Conversational
Term Selection (CTS) and Multi-View Rerank-
ing (MVR).

CTS is designed to handle the first-round re-
trieval of passages. Given an input question, CTS
utilises BERT (Devlin et al., 2018) in conjunction
with a linear classifier to perform a binary classifica-
tion over terms provided by the dialog history. This
results in a set of conversational terms which are
concatenated with the input question and queried
to a search engine in order to retrieve passages. As
mentioned earlier, the limited amount of training
data provided in the CAsT dataset hinders an effec-
tive training of the classifier used in CTS. To this
end, the CTS classifier is trained using weak su-
pervision by utilising dialogs from a task-oriented
dialog dataset (Quan et al., 2019).

On the other hand, MVR is designed for rerank-
ing. It reranks the passages obtained through CTS.
By a simple means of data fusion it adapts an ad-
hoc reranker to the conversational setting. It first
begins by constructing three different views of the
information need embedded within an input ques-
tion. Each view is a query in its own sense and aims
at extracting different types of contextual informa-
tion. The first view is based on the reformulation
of the input question. Using a similar mechanism
as pseudo-relevance feedback, the second and the
third view use the dialog history and the passages
retrieved during the first-round of retrieval in order
to expand the input question. Later, MVR individu-
ally uses each view to rerank passages using BERT
(which is fine-tuned for passage ranking). Finally,
it performs a fusion over the rankings produced by
the individual views.

The experimental results show that the entire
pipeline is highly effective for passage retrieval i.e
it improves the first-stage retrieval of passages as
well the overall accuracy in a reranking pipeline.
On the key metric of NDCG@3, the proposed
pipeline achieves a relative performance improve-
ment of 14.8% over the state-of-the-art baseline.



It also performs 3% relatively better than the Ora-
cle which uses ground truth query reformulations
for ranking of passages. To the best of our knowl-
edge, no automatic system had been able to beat
the Oracle until now.

2 Related Work

Previous research provides guidance about the re-
quirements of conversational search systems. For
example, Radlinski and Craswell (2017) described
desirable key features for conversational informa-
tion retrieval systems. Trippas et al. (2018) identi-
fied commonly-used interactions and informed con-
versational search system design by studying the
conversations of real users. Thomas et al. (2017)
released the Microsoft Information-Seeking Con-
versation (MISC) dataset, which mimics conversa-
tional assistants such as Cortana.

Prior to the CAsT dataset, researchers often
utilised dialog response reranking tasks (Zhou et al.,
2016; Wu et al., 2016), conversational question-
answering (Choi et al., 2018; Reddy et al., 2019)
and voice based recommendation (Zhang et al.,
2018) as a ‘proxy’ for a conversational search set-
ting. For example, Kenter and de Rijke (2017)
presented an end-to-end trainable Attentive Mem-
ory Network for reading comprehension. Yang
et al. (2018) proposed a method for dialog response
ranking that incorporates external knowledge into
deep neural models with pseudo-relevance feed-
back. Aliannejadi et al. (2019) formulated the
task of asking clarifying questions in open-domain
information-seeking conversational systems.

The introduction of the CAsT dataset (Dalton
et al., 2020) has brought in a new range of systems
which focus on conversational information seeking.
The ATeam’s run (Dalton et al., 2019) of TREC
CAsT 2019 utilises GPT-2 (Radford et al., 2019) to
translate questions augmented with previous turns
of the conversation into stand-alone questions that
are afterwards used to retrieve relevant passages.
Their question rewriting approach is based on a
transfer learning paradigm. On the other hand, to
overcome the problem of limited data, Yang et al.
(2019) propose two ad-hoc approaches based on
historical question expansion and historical answer
expansion in combination with BERT (Devlin et al.,
2018) for ranking passages. More recently, Yu
et al. (2020) utilise rule-based and self-supervised
methods to generate weak supervision data using
large amounts of ad hoc search sessions which in

Previous Questions
(Conversation History)

Current Question

Term Selection Classifier
Search
Engine

Passages

Multi-View Queries Reranked
Passages

Conversation

Conversational Term Selection

Multi-View Reranking

BERT Reranker Fusion

Figure 1: An overview of the proposed pipeline.
turn are used to fine-tune GPT-2 in order to rewrite
conversational queries. The rewritten queries are
then used for ranking passages.

3 Proposed Approach

Figure 1 presents an overview of the approach. The
pipeline consists of i) Conversational Term Selec-
tion (CTS), and ii) Multi-View Reranking. The
CTS component uses a classifier to select relevant
contextual terms from dialog history. The classi-
fier’s predictions are then used to convert the given
question into a query before submitting it to the
search engine. The top R passages obtained with
this method are passed to the Multi-View Rerank-
ing component which begins by projecting the in-
put question into Multi-View Queries. The first
view is based on question reformulation, the sec-
ond view utilizes the CTS predictions, whereas the
third view uses the top retrieved passages obtained
using CTS. Each of these views are then individu-
ally used for reranking. The process of reranking
is performed using a BERT-based reranker. Finally,
the rerankings produced using the individual views
are combined using fusion.

CTS and MVR are described in details below.

3.1 Conversational Term Selection (CTS)

Figure 2 provides an overview. CTS is designed
for first-stage passage retrieval. First, given a con-
versational topic T , an utterance question ut pro-
duced during turn t, the set of questions Tt−1 =
{u1, u2 . . . ut−1} produced in the turns prior to
t where each ui comprises of individual terms
{ui,1, ui,2, ui,3 . . .} (ui,j represents the jth term of
the ith utterance), the CTS classifier classifies each
term uij present within the questions of Tt−1 as 0
or 1.

Thus, term selection becomes a binary classifica-
tion problem where each term occurring in previous
turns should either be selected or removed. Each
selected term acts a relevant contextual term which
can help in improving retrieval. This process can
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Figure 2: The Conversational Term Selection (CTS)
classifier.
also be thought of as a query expansion technique,
albeit different from pseudo relevance feedback.
Instead of conditioning on the retrieved documents
for finding appropriate expansion terms, the pre-
vious turns of a conversation are used for doing
so.

Later, the selected terms along with the input
question are queried to a search engine for retriev-
ing passages. Unlike MVR, CTS does not project
an input question into multiple views at the time
of retrieval. This would be unnecessary as the
first-round of retrieval only focuses on retrieving
relevant passages. It does not focus on bringing
the highly relevant passages at the top. The job
of bringing the most highly relevant passages at
the top of the ranked list is that of the reranker.
Nonetheless, it would still be interesting to see how
a multi view initial ranking would affect the final
reranking. This is left for future work.

3.1.1 Training Data Creation
For each question within a conversation topic T ,
the CAsT dataset also provides a ground truth re-
formulated version.

For each ut ∈ T , a ground truth reformulated
question rt is also provided. These reformulated
questions can be leveraged to create data for train-
ing the CTS classifier. First, for each question
ut, a set of conversational terms CTt is created
that help resolve the context of ut. The set CTt

consists of terms present in rt but not in ut i.e.,
CTt = {rtj |∀rtj /∈ ut}. Next, the terms present in
questions ranging from u1 . . . ut−1 are marked as
0 or 1 depending on whether they were a part of
the set CTt or not. This process helps in forming
the required dataset.

3.1.2 Training with Weak Supervision
To overcome the limitations caused by the small
size of CAsT trainig data and to achieve better

generalization capabilities, the CTS classifier is
trained using weak supervision. This is done by
additionally training the classifier with examples
from a task-oriented dialog dataset.

Quan et al. (2019) manually constructed a
dataset on the basis of the public dataset Cam-
Rest676 (Wen et al., 2016), which is meant for
training task oriented dialog systems. This dataset
is particularly suitable for training the CTS classi-
fier because i) the utterances within a conversation
consists of ellipsis and coreferences which can help
in providing better signals, and ii) each utterance
is accompanied by its ground truth reformulation,
thereby making it slightly straightforward to manip-
ulate the dataset in order to come up with examples
suitable for training the CTS classifier. This can be
done by simply using the process of data creation
as described above (Section 3.1.1).

Note that this might lead to the creation of impre-
cise examples as the CamRest676 dataset does not
provide any information about how much should
one look back further within the dialog history in
order to resolve the context of the input utterance.
Due to this reason, training on the created data
leads to a weakly-supervised classifier.

3.1.3 BERT with Linear Classifier

CTS classifier uses BERT in conjunction with a
linear layer to select conversational terms. Given
the question in the current turn ut, and the previous
questions u1 . . . ut−1, BERT is used to generate the
token representations of individual terms within the
questions. Next, the token representations of the
terms within u1 . . . ut−1 are individually passed as
inputs to the linear layer in order to decide whether
to select the individual terms or not (as in Figure
2).

3.1.4 First-Stage Passage Retrieval

After the CTS classifier selects the necessary con-
versational terms, the selected terms are concate-
nated with the current question (input question)
to define a query that can be used for passage
retrieval. Passage retrieval is performed by the
Indri search engine (Strohman et al., 2005) with
the query wrapped around a ‘combine’ operator.
Passages are indexed without the removal of stop-
words. Stemming of the passages is done using the
Krovetz stemmer.
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3.2 Multi-View Reranking (MVR)

An overview of the architecture can be seen from
Fig. 3. The input question is first converted into
Multi-View Queries. Each view is produced using
a different source and serves a different kind of pur-
pose. The first view is constructed using the terms
present in the dialog history. The second view is
constructed using the terms present in the retrieved
passages. The third view is the reformulation of
the input question. Each of these views are individ-
ually used for reranking passages. Finally, MVR
performs a fusion over the ranked list produced by
the individual views.

3.2.1 Multi-View Queries
As mentioned earlier, MVR constructs three dif-
ferent views of the queries. Each view looks at
a different source of information and tries to rep-
resent the information need embedded within the
input question in a different manner. The views are
described below:

1. Question Expansion using Dialog History:
The outputs of the CTS classifier obtained via
the CTS component is concatenated with the
input question.

2. Question Expansion using Passages: Given
the input question and a few of the R pas-
sages produced during the first-round of re-
trieval, the CTS classifier first classifies the
terms present in each of the selected passages.
The positively classified terms are then con-
catenated with the input question.

3. Query Reformulation using GPT-2: This
view adopts the method presented by Yu et al.
(2020). The input question is reformulated
to a de-contextualized question using GPT-2
(Radford et al., 2019). For this task, GPT-2 is

fine-tuned using weakly supervised data ob-
tained from large amounts of ad hoc search
sessions aimed at mimicking conversational
style questions.

Note that all three views attemp to present the
same information need in a different manner, al-
beit with different granularities. Query expansion
with passages attempts to de-contextualize the in-
put question using the retrieved passages. Query
Reformulation using GPT-2 attempts to produce
a well-formed natural language reformulation of
the input question. Whereas, Question Expansion
using Dialog History is a type of pseudo-relevance
feedback mechanism which aims at selecting terms
from the dialog history in order to keep the focus
of the input question on topic.

There is a slight difference between Query Re-
formulation view and the Query Expansion view.
Query reformulation only aims to reformulate
the question by handling ellipsis or co-references.
However, query expansion aims to extend beyond
that by selecting additional terms which can help
in keeping the focus of the question on topic and at
the same provide more informational terms.

3.2.2 BERT Reranker
Each view is individually used to rerank the pas-
sages produced during the first-round of retrieval
using a BERT-based reranker. Here, the BERT-
base model is fine-tuned for the task of ad hoc
passage ranking using the MS-MARCO passage
ranking dataset. Following (Nogueira and Cho,
2019), BERT-base is fine-tuned on 2% of the train-
ing data.

Note that the reranker used here is the same as
the one used by Yu et al. (2020) and ATeam (Dalton
et al., 2019). However, MVR aims to extend the
capabilities of the reranker and adapts it to the
conversational setting by exposing it with multiple
forms of the input question.

3.2.3 Fusion
This step within MVR is extremely straightforward
and aims to merge the rankings produced by the
individual views. This is done by a simple aggrega-
tion of the scores produced for a passage by each
of the individual views.

4 Experimental Methodology

Dataset: The CAsT dataset (Dalton et al., 2020)
consists of 30 training topics (9 questions per topic,



269 in total), and 50 test topics (9.6 questions per
topic, 478 in total). However, relevance judgments
are available only for 20 test topics (173 questions).
Therefore, evaluation is performed only over the
20 judged topics. The passages in CAsT dataset
are borrowed from MSMARCO and TREC Com-
plex Answer Retrieval Track. On the other hand,
the annotated CamRest676 dataset, which is used
for weak supervision, consists of 676 dialogs with
coreferences and ellipsis annotations (Quan et al.,
2019).

Parameter Settings: The CTS classifier uses
BERT-base-uncased model and is fine-tuned for
5 epochs. It uses Adam (Kingma and Ba, 2014)
as the optimiser with a learning rate of 5 × 10−5.
While training, the maximum length of the context
is clipped to 100, and the length of the input ques-
tion is clipped to 30. On the other hand, MVR uses
a BERT-base-uncased model fine-tuned on 2% of
the MS-MARCO Passage Ranking dataset. Dur-
ing training, the maximum length of the query is
clipped to 64, whereas that of the passage is clipped
to 256. The first-round of retrieval by CTS leads to
a total of 1000 passages per input question. Dur-
ing the reranking phase, only top R of the initial
passages are reranked by MVR.

Evaluation Metrics: The performance of the
CTS classifier is measured using Precision (Prec),
Recall and F1. The passage retrieval performance
is measured using Normalized Discounted Cumula-
tive Gain at a ranking depth of 3 (NDCG@3) which
is the main metric prescribed by TREC CAsT. The
results are also evaluated using Mean Reciprocal
Rank (MRR).

5 Experiments and Results

This section is divided into two halves. The first
half evaluates the performance of CTS. The sec-
ond half evaluates the performance of MVR i.e the
result of using the entire pipeline.

5.1 Efficacy of CTS

Experiments over CTS aim to answer the following
questions:

• Q1: How well does the CTS classifier per-
form?

• Q2: To what extent does incorporating weak
supervision help improve the performance of
the classifier?

Prev. turns Used Prec Recall F1
1 0.462 0.453 0.457
2 0.481 0.338 0.397
3 0.493 0.304 0.377
4 0.566 0.266 0.363
5 0.567 0.282 0.377

Table 2: Accuracy of the CTS Classifier when trained
on CAsT topics with varying amounts of history.

Supervision Type Prec Recall F1
Add Only 0.88 0.327 0.476
Add + 1 previous 0.617 0.744 0.674
Add + 2 previous 0.706 0.621 0.661
Add + 3 previous 0.695 0.680 0.687
Add + 4 previous 0.724 0.684 0.703
Add + 5 previous 0.709 0.691 0.705
Add + All previous 0.698 0.758 0.727

Table 3: Accuracy of CTS Classifier with trained using
Weak Supervision.
• Q3: What is CTS’s first-round retrieval per-

formance?

5.1.1 Q1: Performance of CTS Classifier
Table 2 shows the performance of the classifier
when trained on CAsT training data. It also reflects
the effects of training the classifier with different
amounts of dialog history. The CAsT training set
is split into training and validation in a ratio of
4:1. In the entire setup, the classifier is trained
with restricted amount of dialog history and tested
with the entire dialog history made available to
it. This setup helps understand its generalization
capabilities.

It is clear that the precision of the classifier in-
creases with an increase in the amount of dialog
history. However, the trend for recall is the ex-
act opposite. The F1 scores remain quite low for
all the cases. These trends clearly depict the data
scarcity issue which has been mentioned in Section
1 and 3.1.2. The classifier’s generalization capa-
bilities are hindered by the low number of training
examples used in fine-tuning.

5.1.2 Q2: Effect of Training with
Weak-Supervision

Table 3 shows the performance of the classifier
when trained with weak supervision. In the table,
‘Add Only‘ refers to the model trained only on the
modified examples obtained from the additional
dialog dataset. Whereas, ’Add + k previous’ refers
to the model trained by combining examples from



the additional dialog dataset and examples from the
CAsT training set (with the dialog history clipped
to k previous turns).

On comparing the statistics in Table 2 and Table
3, it is evident that the precision of the classifier im-
proves greatly when trained on ‘Add Only’. How-
ever, there is no improvement in its recall. On the
other hand, it seems that the increase in the amount
of k in ‘Add + k previous’ (with the exception of
k = 1) leads to an increase in the classifier’s recall.
This trend is in contrast with Table 2 where the
recall decreases with increasing number of turns.
A possible reason could be the fact that presence of
weakly supervised examples forces better ground-
ing of the coreference terms within the dialog.

The best F1 score is obtained with ‘Add + All
previous’. This provides almost a 60% improve-
ment over the best result in Table 2. Thus, it is
clear that weakly supervised data helps in improv-
ing performance.

It might be possible that the CTS classifier ends
up selecting a few noisy terms. This might lead
to low scores for some of the relevant passages
during the first-round of retrieval. However, MVR,
by utilising three different types of information
should be able to boost the scores for those relevant
passages, thereby bringing them at the top of the
ranked list.

5.1.3 Q3: Passage Retrieval Performance
The performance of the proposed method is com-
pared to that of four baselines. Base1 uses the
original questions without any modifications for re-
trieval. Base2 appends the nouns, verbs and adjec-
tives from the preceding turns to the current ques-
tion before retrieval. AllenCoref (Lee et al., 2017)
performs co-reference resolution to re-write the in-
put question before performing passage retrieval.
Finally, Spacy N-Coref uses Spacy’s neural co-
reference model to do the same as AllenCoref.

The results are shown in Table 4. The results
of CTS are based on the model trained on ‘Add
+ All Previous’. The poor performance of Base1
depicts the need for finding appropriate contextual
terms for effective query creation. On the other
hand, the poor performance of AllenCoref and Neu-
ralCoref show that co-reference models were un-
able to resolve the questions effectively, thereby
confirming that off-the-shelf co-reference meth-
ods struggle with conversational style questions.
Their results might also hint that co-reference alone
is not enough for retrieval. Base2, which simply

Method NDCG@3 MRR
Base1 0.153 0.317
Base2 0.271 0.538
AllenCoref 0.206 0.404
Spacy N-Coref 0.191 0.398
CTS 0.294 0.558

Table 4: Retrieval Performance of CTS

Method NDCG@3 MRR
Pgbert 0.413 0.665
h2oloo RUN2 0.434 0.714
CFDA CLIP RUN7 0.436 0.715
GPT-2 Rewrite 0.492 0.780
Oracle 0.545 0.842
MVR 0.565 0.833

Table 5: Reranking Performance of MVR
chooses the nouns, verbs and adjectives, performs
better than co-reference models. However, select-
ing all the nouns, verbs and adjectives might end
up adding noise (of undesirable proportions) to the
created query and could cause a drift in its topic.
By alleviating this issue precisely, CTS seems to
outperform the other methods.

Here the retrieval performance of CTS is not
compared with the state-of-the-art baselines. This
is because the baselines only report their final re-
sults which are obtained after the reranking phase.
It is also unclear how the baselines conduct their
first-round of retrieval. However, the final results
of this paper make a fair comparison with the final
results of the state-of-the-art.

5.2 Efficacy of MVR
This part aims to measure the effectiveness of the
entire pipeline by measuring the final reranking
performance of MVR. Experiments over MVR aim
to answer the following questions:

1. Q1: What is MVR’s reranking performance?

2. Q2: What is the effect of adding different
views?

5.2.1 Passage Reranking
The results can be seen from Table 5. As is
evident, the performance of MVR is compared
against several baselines. Pgbert, h2oloo RUN2
and CFDA CLIP RUN7 are the top three auto-
matic runs submitted to TREC CAsT. Pgbert uses
GPT-2 for query rewriting and later reranks the
passages using BERT. Both h2oloo RUN2 and



CFDA CLIP RUN7 use a heuristic-based method
for query expansion. Later, they use the title of the
conversation and the expanded query for reranking
of passages using BERT. Note: in a real scenario a
user may not necessarily provide a title to the con-
versation before starting one. Thus, h2oloo RUN2
and CFDA CLIP RUN7 simply utilise additional
information which may not be readily available.
MVR does not make use of any such ‘given’ ad-
ditional information. GPT-2 Rewrite (Yu et al.,
2020) uses a fine-tuned GPT-2 for question refor-
mulation and reranks passages using BERT. Finally,
the Oracle uses ground truth question reformula-
tions for reranking via BERT.

Out of the 1000 passages retrieved by CTS,
MVR reranks the top R of them. The Query Ex-
pansion using Passage view is constructed using
the top K passages, out of the 1000 total retrieved
during the first-stage of retrieval. Both R and K
are tuned and set as 500 and 50 respectively.

As is evident from Table 5, the MVR is able to
outperform all the automatic baselines by quite a
substantial margin. By using a sophisticated mech-
anism for conversational term selection and with-
out using any additional information like the title,
MVR is able to perform better than h2oloo RUN2
and CFDA CLIP RUN7, both of which utilise ti-
tle and are based on a heuristic method for query
expansion. This clearly depicts that the expansion
terms selected by CTS helps MVR to produce an
effective ranked list of passages.

Both Pgbert and GPT-2 rewrite use GPT-2 ques-
tion reformulation. The reformulations act as the
sole information for reranking passages. By accu-
mulating three different types of information (one
of which includes reformulation), MVR is able to
perform better than question reformulation mechan-
ims. MVR is able to outperform GPT-2 rewrite,
which is also state-of-the-art by almost 14.8%.

On the key metric of NDCG@3, it can be said
that MVR is better than the Oracle by a slight mar-
gin. Although the NDCG@3 of MVR is greater
than the Oracle, its MRR is slightly lower. A reason
for this could be the fact that the Oracle retrieves
more relevant passages than the MVR but the MVR
better ranks highly relevant passages.

One must also note that the rerankers used by
all the baselines have the same configuration i.e all
the rerankers are fine-tuned on the passage ranking
corpus of MS-MARCO. Therefore, it would not be
futile to say that the power of MVR lies within its

Selected View(s) NDCG@3 MRR
Passages 0.306 0.571
Dialog History 0.509 0.765
Passages
+ Dialog History

0.514 0.796

All Views (Full MVR) 0.564 0.833

Table 6: Reranking performance when using different
views in MVR.
Multi-View Queries.

5.2.2 Performance of Adding Views

The results of using different views is presented in
Table 6. It is clear that using the expansion using
passage view does not a have good performance by
itself. One of the reasons for this could be the fact
that the questions asked in the CAsT conversations
do not refer to any entities within the answer of
the previous passages i.e the questions in CAsT
can be resolved using dialog history alone. There-
fore, expansion using passages by itself is not very
efficient. However, it does help when combined
with other views. This is because expansion using
passages provides extra credit to the more highly
relevant passages.

On the other hand, expansion using the dialog
history view is able to perform better than the best
baseline as its NDCG is higher than that of than
GPT-2 rewrite (refer Table 5). It is important to
note that the GPT-2 rewrite is equivalent to the
question reformulation view of MVR.

Fusion of the expansion using passages view and
expansion using history view provides a further
improvement over expansion using history view
alone. Finally, by combining the all three views
together, MVR is able to provide the best result.

6 Conclusion

This paper presents a simple yet highly effective
pipeline for conversational search. The pipeline
consists of two components: CTS and MVR. CTS
aids in first-round of passage retrieval by selecting
important contextual terms from the dialog history.
MVR reranks the passages obtained by CTS by
expressing the information need embedded within
a question in multiple forms. The combination is
able to surpass the state-of-the-art and at the same
time perform slightly better than the Oracle. To the
best of our knowledge, no automatic system has
been able to do so.
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