
Leveraging Moderate User Data for News
Recommendation

Dhruv Khattar, Vaibhav Kumar*, Vasudeva Varma
Information Retrieval and Extraction Laboratory

International Institute of Information Technology Hyderabad
Hyderabad - 500032, Telangana, India

Email: {dhruv.khattar, vaibhav.kumar}@research.iiit.ac.in, vv@iiit.ac.in

Abstract—It is very crucial for news aggregator websites
which are recent in the market to actively engage its existing
users. A recommendation system would help to tackle such a
problem. However, due to the lack of sufficient amount of data,
most of the state-of-the-art methods perform poorly in terms of
recommending relevant news items to the users. In this paper, we
propose a novel approach for Item-based Collaborative filtering
for recommending news items using Markov Decision Process
(MDP). Due to the sequential nature of news reading, we choose
MDP to model our recommendation system as it is based on a
sequence optimization paradigm. Further, we also incorporate
factors like article freshness and similarity into our system by
extrinsically modelling it in terms of reward for the MDP. We
compare it with various other state-of-the-art methods. On a
moderately low amount of data we see that our MDP-based
approach outperforms the other approaches. One of the reasons
for this is that the baselines fail to identify the underlying patterns
within the sequence in which the articles are read by the users.
Hence, the baselines are not able to generalize well.

Index Terms—Collaborative Filtering, Markov Decision Pro-
cess, News Recommendation, Semantic Similarity

I. INTRODUCTION

In the contemporary world, readers want to read news
coming from a variety of sources. One of the reasons for this
is that a single digest is not able to cover the different kinds of
news that a user looks for. Also, reading news from a variety
of sources provides alternate perspectives to a particular news
event. Altogether, there are a variety of reasons to it. This
is the scenario where news aggregators come into play. Such
aggregators collect news from a variety of sources to present
to its users. User engagement needs to be maximized and in
order to do this articles of interest should be presented to the
users. Specifically, this is very crucial for the websites which
are recent to the market. In the initial stages such websites have
very moderate user activity and one of their prime focus is not
to lose their existing userbase. Hence, actively engaging its
existing users becomes crucial. A recommender system would
help in solving such a problem. However, lack of sufficient
amount of data to generate good recommendations remains a
problem.

Most commonly, methods for recommending news arti-
cles have been divided into two categories: Content-based

*Corresponding Author

filtering(CBF) and Collaborative filtering(CF). The latter is a
major approach to this task [1] [2] [3] [4] [5]. Content-based
recommendation [6] [7] uses features about items and/or users
to recommend news items. Both have proven to work well in
different scenarios but have their own challenges.

Typically, CF requires a considerable amount of history of
interactions of the users before good quality recommendations
can be provided. This is known as the cold start problem
[8]. On the other-hand CBF uses different kinds of similarity
measures between items and/or users to recommend news
articles. However, none of these methods directly account for
the freshness of the news articles.

Apart from this, one of the major issues is that of datasize
required for learning the model. As mentioned earlier, typical
CF requires a considerable amount of user history in order
to come up with good recommendations. In recent years, the
problem of recommendation has also been tackled using deep
learning settings. However, usually the data on which such
models train is very large and do not seem to work well on
moderately low amount of data.

The sequence in which a user reads news articles has a lot
of information present in it. Due to the sequential nature of
news reading, the task of recommendation could be posed as a
sequential prediction problem as well as a sequential decision
problem. The latter method of modelling is similar to what
we present here. In this paper, we propose a model which
is similar to Item-based CF which leverages the information
present in the sequence in which the articles are read by
the users. Along with it, we also incorporate the aspect of
freshness and similarity between different articles to capture
the overall interests of users. The similarity between different
articles is captured using a semantic measure. We use MDP
to model this altogether.

II. RELATED WORK

There has been a lot of work on recommendation systems.
Here, we look at some of the work which is related to our
proposed approach.

In general, recommendation system can be divided into CF-
based and CBF-based approaches. In CF-based recommenda-
tions, items are recommended to a user based on users sharing
similar interests. CF-based systems can further be divided into



Item-based, User-based or a hybrid of both these. Examples
of this technique include nearest neighbour modelling [1],
Bayesian Matrix Factorization, Restricted Boltzmann Ma-
chine(RBM) [4], AutoRec(autoencoder based collaborative
filtering) [10].

Recently, researchers have developed deep learning based
approaches to tackle the problem of recommendation. In [12],
authors use Boltzmann Machines to learn similarity between
items, and then combined this with Collaborative Filtering.
In [10] [19], authors use Autoencoders for Collaborative
Filtering. It has been shown that it outperforms the state-of-
the-art CF techniques like Matrix Factorisation, RBM-CF and
is comparable with LLORMA [13].

III. MODEL ARCHITECTURE

In this section, we describe the overall architecture of
our model. Firstly, we mention the notations used. Next, we
discuss the semantic measure used to find out the similarity
between different news articles. Then, we discuss the construc-
tion of Markov Decision Process. Finally, we explain how we
recommend articles to a user based on the decisions made by
the MDP.

A. Notation

We denote the set of articles by N . We treat each article as
a state. We define the reading sequence of each user ui as Ui =
[n1, n2, ... , nt]. We introduce a parameter k, which denotes
the number of clicks after which an article nj is read after
ni in a given sequence. For example: in the above mentioned
sequence n2 is read 1 click after n1.

B. Semantic Similarity

We use a method similar to that of Semantic Recommen-
dation mentioned in [14] for finding out similarity between
different news articles. In traditional forms of text comparison
all words in the text are considered. In our results we see
that using traditional forms of text comparison like cosine
similarity (in KNN) does not help much. One of the reasons
for this is that it becomes difficult for such methods to identify
the relatedness between two different words. For example,
there is no way to explicitly identify the relatedness between
Roger Federer and Rafael Nadal using traditional cosine. Users
who are interested in the former, will be interested in reading
news about the latter as well. To overcome this we create an
ontology which is based on the concepts (topics) which best
describe the given article.

For each news article in our data, we have at least 1
and at most 5 topics that best describe that article. We call
these topics as concepts and using these concepts we find the
semantic similarity between two news articles. Suppose, we
have two news articles ni and nj . We define a concept set
of a news article ni as all the topics that describe that article
(given in the data). We refer to this concept set by C(ni).
Therefore, the concept set of ni is:

C(ni) = [ci1, ci2, ci3, ci4, ci5]

Now, we define concept equivalence set of a concept c as
the set containing all the concepts which occurred at least once
with c across different news articles. Let us denote the concept
equivalence set of c by CE(c). Therefore,

CE(c) = ∪ni∈NcC(ni)

where, Nc is the set of all news articles which have c as
a concept. Now, we use Jaccard’s similarity based on the
concepts contained in the two news articles. Therefore,

ssim(ni, nj) =
(∪lCE(cil)) ∩ (∪lCE(cjl))

(∪lCE(cil)) ∪ (∪lCE(cjl))
(1)

where, cil is the lth concept of article i.
One of the advantages of using such a measure is that, even

for the users whose interaction with the website is very less,
we can still come up with a plethora of related topics which
might be of interest to them.

C. Markov Decision Process

In [15], it has been argued that it is better to view the
problem of recommendation as that of sequential optimization
problem, and hence MDP is better suited for it. An MDP is by
definition a four tuple: 〈S,A,Rwd, TP 〉, where S is the set of
states, A is the set of actions, Rwd is the reward function, and
TP is the transition probability from one state to the other.
The decision makers goal in MDP is to maximize its reward
stream.

There are two problems that we come across while using an
MDP for news recommendation. Firstly, the state space is too
large because of the vast number of news articles. Typically, an
MDP solver requires a matrix of size AxNxN, where N is the
number of news articles. Hence, formulating the set of actions
becomes crucial both for scalability as well as accuracy. In
[15], the size of A becomes equal to N. We change this by
introducing our own set of actions. This is discussed later in
this section.

We treat each read news article as a state. The transition
probability is denoted by TP (ni, nj), where ni,nj ∈ N . We
use Ui of each user along with an exponential discounting
function to calculate TP (ni, nj) as follows:

TP (ni, nj) =
count(ni, nj)∑
n∈N count(ni, n)

(2)

count(ni, nj) =

K∑
k=0

transk(ni, nj) ∗ e−(k−1) (3)

where, transk(ni, nj) denotes the number of times exactly
k − 1 articles were read from ni to nj .

We use exponential discounting with the assumption that
the current article that is being read by the user will have
partial effects on the type of articles that the user will read in
the near future. Also, this helps us to tackle the problem of
varying interests of user.

Now, given the reading sequence Ui of each user, we further
define action Ai ∈ A. Ai denotes the action in which i number
of clicks were required for transitioning between two states.



For example: suppose a user read articles in the following
sequence n1, n2, n3, n4. Then, an action A2 over the state n2
would lead us to the state n4. Our action set consists of five
actions ranging from A1 to A5. We then model our reward
function.

As mentioned earlier, the lifespan of a news article is less.
Hence, a user would have more incentive in reading an article
which is published later in time than the one which is currently
being read. Keeping this in mind, we define our first reward
function as:

Rwd1(Ai, nj , nk) =

{
dt(nk)−dt(nj)

N transi(nj , nk) > 0

0 otherwise
(4)

where dt(ni) denotes the discovery time of news article ni.
Secondly, to capture the similarity between two news article,
we use the semantic similarity measure as follows:

Rwd2(Ai, nj , nk) =

{
ssim(ni, nj) transi(nj , nk) > 0

0 otherwise
(5)

where ssim(ni, nj) denotes the semantic similarity measure
mentioned in 3.2. We then define a third reward function which
is a weighted combination of the above two:

Rwd3(Ai, nj , nk) = α ∗Rwd1(Ai, nj , nk)+

(1− α) ∗Rwd2(Ai, nj , nk)
(6)

where α is a hyperparameter. It is tuned using a cross
validation set. We use the Policy Iteration method using the
MDP-toolbox to calculate the optimal policy [17].

D. Recommending Articles

The MDP gives us the information about the best action
to be undertaken at a given state. To recommend articles we
look at the reading history of each user. We denote the amount
of history to be considered for recommendation as RH . For
example if the reading sequence of a user was [n1, n2, n3, n4,
n5], and our chosen RH is 2, then we only use the decisions
given by the MDP for states n4 and n5. Here each decision
is an action. An action leads to another set of states. We then
choose the top 5 states which have maximum probabilities of
being transitioned to from the current RH state. For example,
in the above sequence, suppose the decision on n4 is A1 and
that of n3 is A2. We would then consider all those states which
could be reached from n4 by performing the action A1. Similar
would be the case for n3 when executing an action A2 over
it. It could be possible that both n3 and n4 lead to the same
state, say ns. In such cases we associate the probability of
ns with the state for which TP (ni, ns) is maximum. Finally,
we get a list of states with decreasing order of probability
values. We select the top 5 states from this list as our set of
recommended articles. This list is basically a ranked set of
recommended articles.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Reading History

H
R

@
5

Rwd1
Rwd2
Rwd3

Fig. 1: Performance of our model on Validation data

Method HR@10 NDCG@10 P@5 MAP
Most Popular 1.16 0.33 0 0.1

RegSVD 1.83 0.833 0 0.16
KNN 1.83 1.16 0 0.23

Bigram 3.16 1.33 0.16 0.53
Discounted Bigram 5.33 1.83 0.5 0.86

MDP(Rwd1, RH = 6) 6.83 3.5 0.5 1.23
MDP(Rwd2, RH = 6) 7.16 3.66 0.5 1.26
MDP(Rwd3, rh = 6) 7.66 4.16 0.83 1.63

TABLE I: Performance of our model vs state-of-the-art models

IV. DATA AND EXPERIMENTS

For the purpose of our study we received data from a social
network aggregation website called Veooz.com1. The data
contains news articles read by users in a sequential manner.
This was collected across a period of three months. The news
articles were in English. Each news article came tagged with
at least one and at most five topics. The way in which these
topics are found out is proprietary to the website. We removed
all the users who had read less than 6 articles. Finally, the data
contained 660 users, 1826 unique articles. We randomly select
data of 60 users as our cross validation set for learning the
hyper parameters involved in MDP.

We use two different methods to test our model. Firstly, we
remove the last 5 articles read by the users. The removed
articles act as our testing set. We train our model on the
remaining articles read by the user. We then recommend a
ranked set of 5 articles to the user. We use two popular metrics
for evaluating our system: precision at position 5 (P@5) and
Mean Average Precision (MAP).

In the other setting, we exclude the last article read by the
user and use the rest for training. We then recommend a ranked
set of x articles. The performance of the ranked list is judged
by Hit Ratio (HR) and Normalized Discounted Cumulative
gain (NDCG). As such, HR@x intuitively measures whether
the test item is present in the top-x list, and the NDCG

1https://www.veooz.com



accounts for the position of the hit by assigning higher scores
to hits at top ranks. We fine tune our hyperparameters using
the cross validation set and thus, set RH = 6, α = 0.7 and
K = 5.

In order to make our results more convincing, we compare
it with several state-of-the-art-methods. These include KNN
as mentioned in [5] which uses similarity between the articles
already read by the user and a new article to recommend news
articles. RegSVD [20] is a matrix factorization based approach
for recommending news articles. We then incorporate a bigram
based model as mentioned in [16]. We modify the bigram
based model to use our discounted probabilities as described in
equations (2) and (3). We then finally evaluate our model with
the three different reward functions mentioned. For some of
the baselines we use the LibRec implementation [18]. Others
are implemented in python.

V. RESULTS AND DISCUSSION

Table 1 summarizes the results. By looking at the perfor-
mance of the most-popular baseline, we can say that popu-
larity does not necessarily correlate with the users interests.
Secondly, we see that both KNN based and MF-based methods
perform poorly specially in the case of their P@5 accuracy.
KNN uses the cosine similarity metric and hence is unable to
generalize well because users have very less reading history.
It isn’t able to capture the actual interests of users. One of the
reasons for the MF-based methods to perform poorly is their
inability to identify the important latent factors. With such a
kind of data, where there is no severe user activity, MF-based
methods seem to fail to identify latent factors which are crucial
to the process of recommendation.

Next, we see that the simple bigram and discounted bigram
models perform better than the above discussed. One of the
most important reasons for this is that, it explicitly takes into
account the reading sequence of a user. These methods are
similar to a language model and make use of the sequence
to recommend a news article. Recommendation is posed as a
sequence prediction problem in these cases.

We see that our MDP-based model outperforms the base-
lines. When modelled using Rwd3, the MDP performs best.
A combination of the information present in the reading
sequence, along with the freshness and semantic similarity
between the different read articles is fairly able to capture
the users interests.

VI. CONCLUSION

News aggregator websites, which are new to the market
cannot generate a lot of data from user interaction. Most of
the state-of-the-art methods heavily depend on huge amounts
of data. Such websites would at least want their existing
userbase to remain intact and in order to do so would deploy a
recommender system. However, by the experiments conducted
we can see that the baselines do not perform very well in such
a scenario (with less data). Here we show that by using the
sequential nature of news reading combined with other aspects
like semantic similarity and freshness, we are fairly able to

generalize and provide better recommendations. Better results
show that the semantic similarity measure is able to capture
the diverse interests of users. Also, posing the problem of
recommendation as that of sequential optimisation provides
us with better results. Another advantange of such a system is
that if we solely use Rwd1 to model our MDP, then the entire
recommendation system becomes language agnostic. Hence,
for news aggregators which combine news belonging to a
variety of languages, this could be helpful.

REFERENCES

[1] Bell, Robert M., and Yehuda Koren. ”Improved neighborhood-based
collaborative filtering.” KDD cup and workshop at the 13th ACM
SIGKDD international conference on knowledge discovery and data
mining. sn, 2007.

[2] Rennie, Jasson DM, and Nathan Srebro. ”Fast maximum margin matrix
factorization for collaborative prediction.” Proceedings of the 22nd
international conference on Machine learning. ACM, 2005.

[3] Salakhutdinov, Ruslan, and Andriy Mnih. ”Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo.” Proceedings of the 25th
international conference on Machine learning. ACM, 2008.

[4] Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. ”Restricted
Boltzmann machines for collaborative filtering.” Proceedings of the 24th
international conference on Machine learning. ACM, 2007.

[5] Sarwar, Badrul, et al. ”Item-based collaborative filtering recommenda-
tion algorithms.” Proceedings of the 10th international conference on
World Wide Web. ACM, 2001.

[6] Linden, Greg, Brent Smith, and Jeremy York. ”Amazon. com recommen-
dations: Item-to-item collaborative filtering.” IEEE Internet computing
7.1 (2003): 76-80.

[7] Liu, Jiahui, Peter Dolan, and Elin Rnby Pedersen. ”Personalized news
recommendation based on click behavior.” Proceedings of the 15th
international conference on Intelligent user interfaces. ACM, 2010.

[8] Su, Xiaoyuan, and Taghi M. Khoshgoftaar. ”A survey of collaborative
filtering techniques.” Advances in artificial intelligence 2009 (2009): 4.

[9] Wang, Chong, and David M. Blei. ”Collaborative topic modeling
for recommending scientific articles.” Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2011.

[10] Sedhain, Suvash, et al. ”Autorec: Autoencoders meet collaborative
filtering.” Proceedings of the 24th International Conference on World
Wide Web. ACM, 2015.

[11] Li, Ping, Trevor J. Hastie, and Kenneth W. Church. ”Very sparse random
projections.” Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2006.

[12] Gunawardana, Asela, and Christopher Meek. ”Tied boltzmann machines
for cold start recommendations.” Proceedings of the 2008 ACM confer-
ence on Recommender systems. ACM, 2008.

[13] Lee, Joonseok, et al. ”Local low-rank matrix approximation.” Interna-
tional Conference on Machine Learning. 2013.

[14] IJntema, Wouter, et al. ”Ontology-based news recommendation.” Pro-
ceedings of the 2010 EDBT/ICDT Workshops. ACM, 2010.

[15] Shani, Guy, David Heckerman, and Ronen I. Brafman. ”An MDP-based
recommender system.” Journal of Machine Learning Research 6.Sep
(2005): 1265-1295.

[16] Garcin, Florent, et al. ”Personalized news recommendation based on
collaborative filtering.” Proceedings of the The 2012 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence and Intelligent
Agent Technology-Volume 01. IEEE Computer Society, 2012.

[17] Chads, Iadine, et al. ”MDPtoolbox: a multiplatform toolbox to solve
stochastic dynamic programming problems.” Ecography 37.9 (2014):
916-920.

[18] Guo, Guibing, et al. ”LibRec: A Java Library for Recommender Sys-
tems.” UMAP Workshops. 2015.

[19] Strub, Florian, Jrmie Mary, and Romaric Gaudel. ”Hybrid Collaborative
Filtering with Autoencoders.” arXiv preprint arXiv:1603.00806 (2016).

[20] Paterek, Arkadiusz. ”Improving regularized singular value decomposi-
tion for collaborative filtering.” Proceedings of KDD cup and workshop.
Vol. 2007. 2007.


