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Abstract

With news stories coming from a variety of sources, it is crucial
for news aggregators to present interesting articles to the user
to maximize their engagement. This creates the need for a news
recommendation system which understands the content of the
articles as well as accounts for the users’ preferences. Methods
such as Collaborative Filtering, which are well known for general
recommendations, are not suitable for news because of the short
life span of articles and because of the large number of articles
published each day. Apart from this, such methods do not harness
the information present in the sequence in which the articles are
read by the user and hence are unable to account for the specific
and generic interests of the user which may keep changing with
time. In order to address these issues for news recommendation, we
propose the Recurrent Attentive Recommendation Engine (RARE).

RARE consists of two components and utilizes the distributed
representations of news articles. The first component is used to
model the user’s sequential behaviour of news reading in order
to understand her general interests, i.e., to get a summary of her
interests. The second component utilizes an article level attention
mechanism to understand her specific interests. We feed the infor-
mation obtained from both the components to a Siamese Network
in order to make predictions which pertain to the user’s generic
as well as specific interests. We carry out extensive experiments
over three real-world datasets and show that RARE outperforms the
state-of-the-art. Furthermore, we also demonstrate the effectiveness
of our method in handling the cold start cases.

1 Introduction

A news aggregator collects news from a variety of sources and
presents it to the user. It would be quite cumbersome for a user to
select articles of her choice from a huge list of presented articles
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which may pertain to a variety of subjects. Hence, it becomes crucial
for such aggregators to have a recommendation system to point the
user to the most relevant items and thus maximize her engagement
with the site and minimize the time needed to find relevant content.

A popular approach to the task of recommendation is collabora-
tive filtering [2, 20, 23], which uses the user’s past interaction with
the item to predict the most relevant content. Another common
approach is content-based recommendations, which uses features
between items and/or users to recommend new items to the users
based on the similarity between features. However, amongst the
various approaches for collaborative filtering, Matrix Factorization
(MF) [14], is the most popular one, which projects users and items
into a shared latent space, using a vector of latent features to repre-
sent a user or an item. Thereafter, a user’s interaction with an item
is modelled as the inner product of their latent vectors.

However, Collaborative Filtering methods are not suitable for
news recommendation because news articles have a short life span
and expire quickly [30]. Such methods also require a considerable
number of interactions with an item (article) before making predic-
tions which is not desirable for news recommendation because we
would ideally want to start recommending articles as soon as they
are published. Also, they do not directly harness the information
present in the sequence in which the articles were read by the user
and hence fail to account for the generic as well as specific inter-
ests of the user which may keep changing with time. In order to
address these issues it becomes crucial to understand the content
of the news articles as well as the user’s preferences. We explain
this through an example in the following paragraph.

As can be seen from Fig. 1(A), if a user reads four different
articles belonging to tennis and football, then we would like our
model to infer that the generic interests of the users lie in reading
articles about sports. Hence, this would allow articles belonging
to different topics in the sports category to be recommended to
the user. However, since the user reads more articles on tennis
rather than football, we would like to give more weight to the
articles related to tennis as can be seen in Fig. 1(B). Hence, in our
overall list of recommended articles to the user, we would like
to present news articles related to sports amongst which articles
related to tennis would be given more importance. It may also
happen that the user suddenly starts reading articles related to
business rather than sports. In such a case we may also want to



start recommending articles related to business as well. This can be
seen in Fig. 1(C). However, it is important to note that in all these
cases the sequential reading history of the user is very important
while generating recommendations.

To encode this intuition, we propose a novel neural network
framework namely Recurrent Attentive Recommendation Engine
(RARE). As illustrated in Fig. 3, RARE consists of two components.
The first component is based on a recurrent neural network and
uses the sequential reading history of the user as its input. We call
this the generic encoder. This helps us to identify the generic/overall
interests of the users, i.e., it provides a summary of the user’s in-
terests. The second component utilizes a recurrent neural network
with an attention mechanism to identify the specific interests of the
user. We call this the specific encoder. The part dealing with atten-
tion allows the model to attend to articles in a differential manner,
discriminating the more from the less important ones. We then con-
catenate the representations obtained from both these components
and call it the unified representation of the users’ interests. Limiting
the size of the user reading history used as inputs to both these
components allows us to adapt to the changing user preferences.
We then feed this unified representation along with the represen-
tation of the candidate article to a Siamese Network and compute
an element wise product between the outputs obtained at the final
layer of the sister networks, as illustrated in Fig. 2. Finally, we use
a logistic unit to compute the score for recommendation. Using
such a network enhances the model with further non-linearity and
enables it to capture the user-article interaction in a better sense.
It also allows the model to learn an arbitrary similarity function
instead of the traditional metrics. The distributed representation of
each news article is used as input to our model. This gives us the
capability to recommend articles as and when they are produced,
without depending on any prior user interaction with that article.

To summarize, the main contributions of this work are as follows.

e We present a neural network based architecture (RARE) with
the following capabilities.

— It utilizes the content of the news articles giving it the abil-
ity to recommend articles as soon as they are published.

— It takes into account the users’ generic as well as specific
interests.

— It adapts to the changing interests of the user.

e We carry out extensive experiments over three real world
datasets to show the effectiveness of our model. The results
reveal that our method outperforms the state-of-the-art.

o We show the effectiveness of our model for solving the cold-
start cases as well.

2 Related Work

There has been extensive study on recommendation systems with
a myriad of publications. In this section, we aim at reviewing a
representative set of approaches.

2.1 Common Approaches for Recommendation
Systems

Recommendation systems in general can be divided into collab-
orative recommendation systems and content-based recommen-
dation systems. In collaborative filtering based recommendations,
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Figure 1: In (A), the user’s sequence is used to model her gen-
eral interests. While in (B), the user’s specific interests are
captured. In (C), the changing interests of the user are mod-
elled. In all these cases, sequential reading history of a user
plays an important role. Different colors represent the dif-
ferent topics of the article.

an item is recommended to a user if similar users liked that item.
Collaborative filtering can be further divided into user collabora-
tive filtering, item collaborative filtering or a hybrid of both user
and item collaborative filtering. Examples of such techniques in-
clude Bayesian matrix factorization [22], matrix completion [20],
Restricted Boltzmann Machine [23], nearest neighbour modelling
[2]. In user collaborative methods such as [2], the algorithm first
computes similarity between every pair of users based on the items
liked by them. Then, the scores of user-item pairs are computed by
combining scores of this item given by similar users. Item-based col-
laborative filtering [24], computes similarity between items based
on the users who like both items. It then recommends items to
the user based on the items she has previously liked. Finally, in
user-item based collaborative filtering, both the users and the items
are projected into a common vector space based on the user-item
matrix and then the item and user representation are combined to
find a recommendation. Matrix factorization based approaches like
[20] and [22] are examples of such a technique. One of the major
drawbacks of collaborative filtering is its inability to handle new
users and new items, a problem which is often referred to as the
cold-start issue.

Another common approach for recommendation is content-
based recommendation. In this approach, features from user’s pro-
file and/or item’s description are extracted and are used for rec-
ommending items to users. The underlying assumption is that the
users tend to like items that they liked previously. In [16], each user
is modeled by a distribution over news topics that is constructed
from articles she liked with a prior distribution of topic preferences
computed using all users who share the same location. A major
advantage of using content-based recommendation is that it can
handle the problem of item cold-start as it uses item features for
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Figure 2: RARE Model Architecture

recommendation. For user cold-start, a variety of other features like
age, location, popularity aspects could be used. In the following we
discuss previous work on neural approaches for recommendation
systems.

2.2 Neural Recommendation Systems

Early work which used neural networks [23] used a two-layer Re-
stricted Boltzmann Machine (RBM) to model users’ explicit ratings
on items. The work has been later extended to model the ordi-
nal nature of ratings [18]. Recently auto-encoders have become a
popular choice for building recommendation systems [3, 25, 26].
The idea of user-based AutoRec [25] is to learn hidden structures
that can reconstruct a user’s ratings given her historical ratings
as inputs. In terms of user personalization, this approach shares a
similar spirit as the item-item model [17, 24] that represents a user
in terms of her rated item features. While previous work has lent
support for addressing collaborative filtering, most of them have
focused on observed ratings and modeled the observed data only.
As a result, they can easily fail to learn users’ preferences from the
positive-only implicit data.

In [28] a collaborative denoising auto-encoder (CDAE) for CF
with implicit feedback is presented. In contrast to the DAE-based
CF [26], CDAE additionally plugs a user node to the input of auto-
encoders for reconstructing the user’s ratings. As shown by the
authors, CDAE is equivalent to the SVD++ model [14] when the
identity function is applied to activate the hidden layers of CDAE.
Although CDAE is a collaborative filtering model, it is solely based
on item-item interaction whereas the work which we present here
is based on user-item interaction. On the other hand in [9], authors
have explored deep neural networks for recommendation systems.
They present a general framework named NCF, short for Neural
Collaborative Filtering, that replaces the inner product with a neural
architecture that can learn an arbitrary function from the given data.
It uses a multi-layer perceptron to learn the user-item interaction
function. NCF is able to express and generalize matrix factorization.
They then combine the linearity of matrix factorization and non-
linearity of deep neural networks for modelling user-item latent
structures. They call this model as NeuMF, short for Neural Matrix
Factorization.

Since our work also involves projecting articles and users to a
common geometric space, we review the work in [13]. They propose

an effective approach for projecting queries and documents into
a common low-dimensional space. The model is named as Deep
Structured Semantic Model (DSSM) [13] and is effective in calcu-
lating the relevance of the document given a query by computing
the distance between them. Originally this model was meant for
the purpose of ranking, but since the problem of ranking has very
close associations with that of recommendation, DSSM was later
extended to recommendation scenarios in [6]. In [6], the authors
designed a DSSM such that the first neural network contains user’s
query history (and thus referred to as the user view) and the second
neural network contains implicit feedback of items. The resulting
model is named multi-view DNN (MV-DNN) since it can incorpo-
rate item information from more than one domain and then jointly
optimize all of them using the same loss function in DSSM. However,
in [6], the features for the users were their search queries and fea-
tures for items came from multiple sources (e.g., Apps, Movies/TV
etc.). This makes it less adaptable by a news website as it requires a
lot of information outside the news domain. However, if the work
is viewed in its entirety, it suggests that supercharging a neural
network with non-linearities to project a user and an item to the
same geometric space is very effective in calculating relevance. We
draw the inspiration for using Siamese network in our model on
similar grounds.

3 Model Architecture

In this section we first introduce the news article recommenda-
tion task and then provide an elaborate description of the various
components of the proposed RARE model.

3.1 Task Description

Given a series of news articles read by the user, our task is to
recommend articles of interest to the user. The implicit feedback
provided by the user is available to us, i.e., we have information
about the articles clicked by the user. Apart from this, we also have
the content of the news articles available at our disposal.

We first select a reading history of size R for each user. The size
of the reading history determines the number of past interactions
we use for making predictions. The articles previously read by a
user can be represented as [r1,r2, ..., 7¢,...,’r] where 1 < ¢t < R.
Using this list as inputs to our model we need to recommend a
ranked list of articles which are aligned with the users’ interests.

3.2 RARE Overview

We propose a novel Recurrent Attentive Recommendation Engine
(RARE) to address the problem of news recommendation for news
aggregators. An overview of our method can be seen in Fig. 2. The
basic idea of RARE is to build a unified representation of a user’s
interests which encapsulates both her specific and generic interests.
Apart from this, using a specific amount of reading history of a
user provides RARE with the flexibility to adapt to the changing
interests of the user. The pipeline of RARE can be described as
follows.

e We first learn a distributed representation for each news
article by combining its title and text.
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Figure 3: Two Components of RARE: Generic Encoder and Specific Encoder

e We then fix a reading history size R, and use the representa-
tions of the previous R articles read by the user as inputs to
the model.

e We come up with a unified representation of the users’ in-
terests using recurrent neural networks with an attention
mechanism.

o Treating the unified representation of the user as a query and
the representation of the candidate article as a document,
we use a Siamese network to make them undergo similar
transformations and supercharge them with non-linearities
to discover user-item interactions.

3.3 Distributed Representation for News
Articles

We learn a 300-dimension distributed representation [15] for each
news article by combining the title and text of the news articles.
Learning such a representation allows us to

e Capture the overall semantics of the news article.
o Enables the model to come up with a representation for new
news articles as well as of articles with varying lengths.

News articles generally follow an inverted pyramid structure where
the title and the first paragraph give away the desired information.
Hence, we only choose the title and the first paragraph because it
usually contains all the relevant information without delving into
detailed explanations. We also experimented by choosing the entire
news article but found better results with just the first paragraph.

3.4 Generic Encoder

The inputs for the generic encoder are the representations of the
articles previously read by the user. Fig. 3(a) shows the graphical
model of the network used to identify generic interests in RARE.
We use Recurrent Neural Network (RNN) with Long-Short Term
Memory (LSTM) cells. LSTMs have been shown to be capable of
learning long-term dependencies [11, 27]. The aim of this compo-
nent is to understand the generic (broader/overall) interests of the
user. The last hidden state of the RNN, i.e., h; encapsulates this
information, which we represent as ¢/. We can think of the final
hidden state as the overall summary of the user’s interests.

The state updates of the LSTM satisfy the following equations.

ft = U[Wf [ht—17 rt] + bf] (1)

ip = o [Wilhi—1,r¢] + bi] (
o = O'[Wo [ht—l’ rt] + bo] (3

l[ = tanh [V[ht_l,r;] +d] (

et =frocr1+ir- (
hy = oy - tanh(cy) (6
Here o is the logistic sigmoid function. f;, i;, o; represent the
forget, input and output gates respectively. r; denotes the input at
time t and h; denotes the latent state. Wf, Wi, W, and V represent
the weight parameters respectively, while by, b, b, and d represent

the bias parameters respectively. The forget, input and output gates
control the flow of information throughout the sequence.

3.5 Specific Encoder

The architecture of Specific Encoder is similar to that of the Generic

Encoder. The graphical representation for this can be seen in Fig. 3(b).
We use LSTM cells here as well. To capture the specific interests

of the users, i.e., to understand the deeper interests of the user

within her broader interests, we use an article level attention mech-
anism. This provides us with a context vector which encapsulates

the specific interests of the user. This can be represented as,

R
¢S = Z ajhj @)
j=1

where the attention weights, «;, control the part of the input
sequence which should be emphasized or ignored and h; stands
for the output of the hidden units. This attention mechanism gives
RARE the capability to adaptively focus more on the important
items.

3.6 RARE

The complete architecture of the proposed model can be seen in
Fig. 4. The outputs obtained from the specific and the generic en-
coder are concatenated and then used as inputs to a Siamese net-
work along with the candidate article.

For the given task, the generic encoder captures the overall
interests of the user, i.e., it captures the summary of the entire news
articles read by the user. At the same time, the specific encoder
adaptively selects the important articles to capture the specific
interests of the user. Hence to take advantage of both kinds of
information we concatenate the outputs of both the encoders.
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Figure 4: Complete Architecture of the RARE System

As shown in Fig. 3, we can see that h? is incorporated into ¢, to
provide the summarized user interests. Note that different encoding
mechanisms will be invoked in both the encoders when trained
jointly. The last hidden state of the generic encoder h? plays a
different role from that of hj. The former has the responsibility
to encode the information present in the sequence in which the
articles were read by the user. While the latter is used for computing
attention weights. Information obtained from both the encoders is
utilized to come up with a unified representation of users’ interests.

R
¢t =[c9;c5] = [h-‘j;zajh;] ®)
j=1

where c¥ represents the unified representation of users’ interests.

We then use c* as inputs to one of the sister networks in the
Siamese network as shown in Fig. 3. The input to the other sister
network is the learned representation of the candidate article. The
Siamese network supercharges RARE with further non-linearities
and makes the user representation and the article representation
go through similar transformations. In [13], an architecture similar
to that of a Siamese network has been used for ranking documents
with respect to a query with great effectiveness. If we try to draw a
parallel between the query-document problem with our task, one
can see that a query in our case is ¢, and the document is the
representation of the candidate news article. Hence, it seems apt
to use such a network if we were to project both of these into
the same geometric space to uncover the underlying user-article
interaction pattern. A similar sort of technique has also been used by
authors in [9] for modelling user-item interactions. Final predictions
are obtained from the Siamese network after the logistic on the
element-wise product between the outputs obtained from the sister
networks.

Rather than using Siamese networks, the other choice was to use
a typical encoder-decoder framework. However, a typical encoder-
decoder framework is unable to produce out-of-vocabulary (OOV)
words. In the news recommendation problem setting, each new
published article, that has not been interacted by any user would
act as an “OOV word”. However, it is very crucial for a news recom-
mender to recommend articles as soon they are published which

is why we resort to such a method as it allows us to handle such
cases well.

3.7 Learning

Typically, to learn the model parameters, existing point-wise meth-
ods [21] perform regression with a squared loss. This is based on
the assumption that observations are generated from a Gaussian
distribution. However, in [9] it has been shown that such a method
is not very effective when we have implicit data available.

Given a user u and an article x, let y;,x represent the predicted
score at the output layer. Training is performed by minimizing the
point-wise loss between y;,x and its target value y,x. Considering
the one-class nature of implicit feedback, we can view the value
of y,x as a label 1 meaning the item x is relevant to a user u, and
0 otherwise. The prediction score y;x then represents how likely
an item x is relevant to u. Hence in order to constrain the values
between 0 and 1, we use the logistic function. We then define the
likelihood function as follows.

potyILem = [ v [] G-wa) @
(w.i)ey*  (wj)ey-
where y* and y~ represent the positive (observed interactions) and
negative (unobserved interactions) articles respectively. I repre-
sents the input and ©, represents the parameters of the model.
The negative log likelihood can then be written as follows (after
rearranging the terms).

- 3,

u,ieytuy~

yuilogyyi + (1 —yu;i)(1 —logyy;)  (10)

The loss is similar to binary cross-entropy and can be minimized
using gradient descent methods.

It is also worth noticing that the likelihood function is such that
it simultaneously adjusts the model’s parameters by maximizing
the score of the relevant articles and at the same time adjusts to
minimize the score of the non-relevant articles. This is similar to
what is done while ranking documents corresponding to a query
in [13]. Using such a likelihood also gives us the advantages of a
ranking function.
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4 Experiments

In this section, we describe the datasets, the state-of-the-art meth-
ods, evaluation protocol along with the settings used for learning
the parameters of the model.

4.1 Dataset

We use three real world datasets for evaluation. First, we use the
dataset published by CLEF NewsREEL 2017 [12]. CLEF shared a
dataset which captures interactions between users and news stories.
It includes interactions of eight different publishing sites in the
month of February 2016. The recorded stream of events include 2
million notifications, 58 thousand item updates, and 168 million
recommendation requests. It also includes information like the title
and text of each news article. For this dataset we considered all
the users who had read more than 10 articles after which we get
a total of 22229 users. The other two datasets are provided by a
popular news aggregation website (name omitted for review). The
second dataset contains a list of articles read by 10297 users in

11

an Indian language, Malayalam. The third dataset contains a list
of articles read by 22848 users in Indonesian. We make the code
publicly available !.

4.2 Baselines
We compare our proposed approach with the following methods.

o ItemPop. News articles are ranked by their popularity judged
by their number of interactions. This is a non-personalized
method to benchmark the recommendation performance
[19].

e BPR [19]. This method uses the matrix factorization method
with a pairwise ranking loss, which is tailored to learn to
rank from implicit feedback. We report the best performance
obtained by fixing and varying the learning rate.

e eALS [10]. This is a state-of-the-art matrix factorization
method for item recommendation. It optimizes the squared
loss (between actual item ratings and predicted ratings) and
treats all unobserved interactions as negative instances and
weighting them non-uniformly by item popularity.

e NeuMF [9]. This is a state-of-the-art neural matrix factor-
ization model. It treats the problem of generating recom-
mendations using implicit feedback as a binary classification
problem. Consequently it uses the binary cross-entropy loss
to optimize its model parameters.

Our method is based on user-item interactions, hence we mainly
compare it with other user-item models. We leave out the compari-
son with other models like SLIM [17] and CDAE [28] because these
are item-item models and hence performance difference may be
caused by the user models for personalization.

4.3 Evaluation Protocol

To evaluate the performance of the recommended item we use the
leave-one-out evaluation strategy which has been widely adopted in
literature [1, 10, 19]. For each user we held-out her latest interaction
as the test instance and utilized the remaining data for training.
Since it is time consuming to rank all items for every user during
evaluation, we followed the popular strategy [6, 14] that randomly
samples 100 items that the user has not interacted with, ranking the
test item among the 100 items. The performance of a ranked list is
judged by Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) [8]. We truncated the rank list at 10 for both the
metrics. As such, the HR@k intuitively measures whether the test
item is present in the top-k list, and the NDCG accounts for the
position of the hit by assigning higher scores to hits at top ranks. We
calculated both metrics for each test user and reported the average
score.

4.4 Parameter Learning

We use an Intel i7-6700 CPU @ 3.40GHz which has a RAM of 32GB
and a Tesla K40c GPU. We implemented our proposed method
using Keras [4]. We randomly divide the labeled set into training
and validation set in a 4:1 ratio. We tuned the hyper-parameters
of our model using the validation set. The proposed model and all
its variants are learned by optimizing the log likelihood given by

Lhttps://github.com/dhruvkhattar/RARE
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Eq. 10. We initialize the fully connected network weights with the

uniform distribution in the range between —\/6/(fanl-n + fanour)

and \/6/(fanin + fanoyr) [7]. We used a batch size of 256 and used
AdaDelta [29] as the optimizer.

5 Results and Analysis

In this section we present the results obtained by carrying different
experiments with our method.

5.1 Performance Comparison with Baselines

For MF based methods like BPR and eALS, the number of predictive
factors chosen is equal to the number of latent factors. We report
the best performance in this case. For NeuMF, we vary the size
of the CF layers (also latent factors) to choose the best fit for our
model.

In Figs. 5 to 7, we compare our method with the baselines. Note
that the performance of ItemPop measure was very weak and hence
it does not show up clearly in the graphs. The Top-K recommended
lists are used where K varies from 1 to 10. It is very clear from Figs. 5
and 6 that RARE outperforms other methods by a significant margin
across all positions on the NewsREEL and the Malayalam datasets
respectively. Although, RARE outperforms the other methods in
case of Indonesian dataset as well (Fig. 7) but the margin is not that
large. Amongst the different baselines, the trend in the performance
can be seen as follows: NeuMF >eALS >BPR (in terms of both HR
and NDCG). Although, in [19] it has been shown that BPR can be a
strong performer for ranking performance owing to its pairwise
ranking aware learner, we did not see the trend for our datasets. On
the other hand RARE outperforms all the other baselines in terms
of NDCG as well.
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Figure 10: Performance of our model on Cold-Start cases
5.2 Effect of Size of Reading History

We vary the size of the reading history R used as inputs to our
model. From Fig. 5, one can see that the Hit Ratio slowly increases
with the size of the reading history until a certain point after which
it decreases. However, the NDCG keeps on increasing. We can at-
tribute this behaviour to the fact that users have diversified reading
interests which only get effectively captured after a substantial
number of interactions have been observed. However, after a while,
increasing the user history often leads to over-specialization where
the generic interests tend to overpower the specific ones. This is
also an indicator of the fact that the preference of a user keeps vary-
ing and hence a window size should be chosen such that it helps
the model to dynamically adapt to the users changing behaviour.

For all our methods, we chose a reading history of 12 for the
users. We needed to make a choice between 12 and 14, and we
chose 12 because we gave more importance to the HR rather than
the NDCG.

5.3 Effect of different Encoders

We first note the effects on RARE by varying the kind of recurrent
network used. We tested our model by using LSTMs, GRUs (Gated
Recurrent Units) [5] and Vanilla RNN. From Fig. 9, the trend in
the performance can be observed as follows: LSTM >GRU >RNN
although the differences are not very large. One of the reasons for
this could be the fact that an LSTM or a GRU is better able to encode
the interests of the user as they handle long-term dependencies
better.

We also note the effects when using different variants of our own
model, i.e., when we replace the unified representation in RARE
with solely the specific or the generic encoder. The results for this
can be seen from Table 1. We note the trend in performance as fol-
lows RARE >Generic Encoder >Specific Encoder. This indicates that
merely identifying the users’ generic interests (a summary of over-
all interests) is not sufficient for learning a good recommendation
model. However, when we use a combination of both in RARE, we
find that the recommendation performance improves which clearly
indicates that identifying both the specific and generic interests are
essential for better recommendations.

5.4 Performance on Cold Start Cases

We then evaluated our model for the cold start cases as can be seen
in Fig. 10. For this task we segregated users who had read a new
news article in the end, i.e., they read articles which had never been
seen before they read it. We found out that the number of such
users were 74 in the CLEF dataset. There were very few such users



Table 1: Performance using different Encoding Mechanism
on CLEF NewsREEL

Method HR@10 | NDCG@10
Specific Encoder 0.916 0.657
Generic Encoder 0.920 0.664
Specific + Generic (RARE) 0.934 0.671

Table 2: Performance of RARE by changing number of dense
layers

Layers HR@10 | NDCG@10
128 0.913 0.659
128—64 0.934 0.671
128—64—32 0.912 0.666

in the other two datasets. Out of these 74 users, we see that the
HR@10 is around 0.35. This promises us that our model is well
suitable for handling the item cold-start problem.

For user cold-start, we test our learned model over users who
had read articles in between 2 to 4 (inclusive) over the same dataset.
Since we set the history size to 12, we had to set the remaining
inputs to 0s. The HR@10 score was around 0.5. We see a gradual
increase in the hit rates as we increase the value of K. The results
promise the effectiveness of our model to handle the problem of user
cold start as well. Although this is not exactly the user cold start
problem because it still considers some number of user interactions,
still it is worth noticing the performance because the baselines need
a considerable amount of user history before making predictions.
On the other hand, in our method, we can simply use the trained
model for recommending articles to users who have had very few
interactions.

5.5 Effect of Varying Layers

We observe the performance of our model when we vary the number
of layers used in the Siamese Network in our model. We experiment
by varying the number of layers along with the number of hidden
units. We experiment by using one layer with size 128, two layers
with sizes 128 and 64 and three layers with sizes 128, 64 and 32.
From Table 2, we can see that the best performance is observed in
the second case.

6 Conclusion

In this paper, we proposed the Recurrent Attentive News Recom-
mendation Engine (RARE) to address the problem of news recom-
mendation. We attempt to encode both the generic and the specific
interests of the users. For the former we use a recurrent neural
network while for the latter we use a recurrent network with an
attention mechanism. We use the unified representations obtained
from both these along with a Siamese network to make predic-
tions. We conducted extensive experiments on three real-world
datasets and demonstrated that our method can outperform the
state-of-the-art methods in terms of different evaluation metrics.
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