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Abstract—One of the most important and challenging prob-
lems in recommendation systems is that of modeling temporal
behavior. Typically, modeling temporal behavior increases the
cost of parameter inference and estimation. Along with it, it also
poses the constraint of requiring a large amount of data for
reliably learning the parameters of the model. Therefore, it is
often difficult to model temporal behavior in large-scale real-
world recommendation systems.

In this work, we propose a deep neural network architecture
which is based on a two level approach. We first generate
document embeddings for every news article. We then use these
embeddings and the previously read articles by a user to come
up with her user profile. We then use this profile along with
adequate positive and negative samples in order to train our
model. The resulting model is then applied to a real-world data
set. We compare it with a set of established baselines and the
experimental results show that our model outperforms the state-
of-the-art. We also use the learned model to recommend articles
to users who have had very little interaction with items, i.e., have
read a very less amount of news articles. We then demonstrate
the effectiveness of our model to solve the problem of item cold-
start.

Index Terms—Deep Structured Semantic Model, User Profil-
ing, News Recommendation

I. INTRODUCTION

Recommendation systems are core components of many of
the modern internet services including news, e-commerce, on-
line movie sites and more. A major approach to the task of rec-
ommendation is called collaborative filtering [1] [2] [3] which
uses the users past interaction with the item to predict the most
relevant content. Another common approach is content-based
recommendation, which uses features between items and/or
users to recommend items to the users based on the similarity
between its features. However, among the various approaches
for collaborative filtering, matrix factorization [4] is the most
popular one, which projects users and items into a shared latent
space, using a vector of latent features to represent a user or an
item. Thereafter, a users interaction with an item is modeled
as the inner product of their latent vectors.

Collaborative filtering needs a considerable amount of pre-
vious history of interaction before it can provide high quality
recommendations. This problem is typically known as the

*Corresponding Author
1The author is also an applied researcher at Microsoft.

cold start problem. For a newly established news website, the
problem would become even more severe since users have
little or no history of interaction with the site. Traditional
approaches fail to produce high quality recommendation in
this case. However, in practice, it has been shown that content-
based approach can handle cold start problem for new items
well.

In the news domain, it becomes very crucial to account for
the dynamic changes in users’ interests as well as to come
up with better recommendations. A solution for this could be
the creation of a user profile which accounts for both the short
term as well as the long term interests of the users. The content
of the items plays a very important role in creating such a user
profile, which many of the recent work do not account for.

Recently in [5], authors proposed a Neural Network archi-
tecture for collaborative filtering. They explore the use of deep
neural network for learning the interaction function from the
data. Their proposed method specifically aims to model the
relationship between users and items.

In this work, we pose the recommendation problem as
that of a binary classification problem. We use the user-item
interaction and the content of the news in order to capture
the similarity between users and items (news). We do not use
any explicit information about the user in order to model her
interests. We only focus on the implicit information provided
by the user, i.e., whether a user read a given article or not.

The sequence in which the articles are read by the user
encapsulates information about the interests of the user. In
order to capture the preferences from the sequence and create
a user profile from it, we need a mechanism which should
be capable of handling long term dependencies. We use the
following steps to achieve this.

1) First, we learn the doc2vec [22] embeddings for each
news article.

2) We then choose a specific amount of reading history for
all the users.

3) Finally we combine the doc2vec embeddings of each
of the articles present in the user history using certain
heuristics which preserves the temporal information en-
coded in the sequence of articles read by the user.

Then, in order to capture the similarity between users and
items, we need to be able to project them to the same latent



space. We adapt Deep Structured Semantic Model (DSSM)
[7] for this. DSSM was originally proposed for the task of
web document ranking. Later, it was adapted for the task of
recommendation in [8]. However, in [8] the features for the
users are their search queries and features for items come from
multiple domains (e.g Apps, Movies/TV etc.) which makes it
difficult for a news website to directly adapt it as a lot of
information outside the news domain is required. Then, for
learning the parameters of the model we use a ranking based
objective function. Finally, for recommending news articles to
the users we use the computed inner product between user and
item latent vectors.

To summarize, the contributions of our work are as follows.
1) We use doc2vec embeddings of each news article in

order to come up with user profiles for each user which
encapsulates information about the changing interests of
the user over time.

2) We use a deep neural architecture for news recommen-
dation in which we utilize the user-item interaction as
well as the content of the news (items) to model the
latent features of users and items.

3) We perform experiments to demonstrate the effective-
ness of our model for the problem of news recom-
mendation. We then perform experiments to show the
effectiveness of our model when the user has had very
little interaction with items.

4) We also address the effectiveness of our model in solving
the item cold-start problem.

II. RELATED WORK

In this section, we aim at reviewing a representative set of
approaches that are related to our proposed approach.

A. Common Approaches for Recommendation

Recommendation systems in general can be divided into
collaborative filtering based recommendation and content
based recommendation. In a narrower sense, in collaborative
filtering based recommendations, an item is recommended to a
user if similar users liked that item. Collaborative filtering can
be further divided into user collaborative filtering, item collab-
orative filtering or a hybrid of both user and item collaborative
filtering. Examples of such techniques include Bayesian matrix
factorization [9], matrix completion [2], Restricted Boltzmann
Machine [3], nearest neighbor modeling [1] etc. Apart from
this, in [28] [29] the authors have tried to come up with
user profiling based techniques in order to provide better
recommendations.

B. Neural Networks for News Recommendation

Early pioneer work which used neural network was done in
[3], where a two-layer Restricted Boltzmann Machine (RBM)
is used to model users’ explicit ratings on items. The work
has been later extended to model the ordinal nature of ratings
[13]. Recently autoencoders have become a popular choice
for building recommendation systems [10] [11] [12]. The idea
of user-based AutoRec [11] is to learn hidden structures that

can reconstruct a users ratings given her historical ratings as
inputs. In terms of user personalization, this approach shares a
similar spirit as the item-item model [15] [14] that represents a
user using features related to her rated items. While previous
work has lent support for addressing collaborative filtering,
most of them have focused on observed ratings and modeled
observed data only. As a result, they can easily fail to learn
users’ preferences accurately from the positive-only implicit
data.

In [5], the authors present a general framework named NCF,
short for Neural Collaborative Filtering that replaces the inner
product (which calculates the similarity between a user and
an item) with a neural architecture that can learn an arbitrary
function from the given data. It uses a multi-layer perceptron to
learn the user-item interaction function. NCF is able to express
and generalize matrix factorization.

C. User-Item Projection

Since our work is based on user-item based collaborative
filtering, we need to project users and items to a common latent
space in order to capture their similarity and recommend items
to users accordingly. One of the most effective approaches
in projecting queries and documents into a common low-
dimensional space has been shown in [7]. The model is named
as Deep Semantic Structured Model (DSSM) [7] which is
effective in calculating the relevance of the document given
a query by computing the distance between them. Originally
this model was meant for the purpose of ranking, but since
the problem of ranking has very close associations with that
of recommendation, DSSM was later extended to recommen-
dation scenarios in [8]. In [8], the authors used DSSM for
recommendation where the first neural network contains the
users query history (and thus referred to as the user view)
and the second neural network contains implicit feedback of
items. The resulting model is named multi-view DNN (MV-
DNN) since it can incorporate item information from more
than one domain and then jointly optimize all of them using the
same loss function as in DSSM. However, in [8], the features
for the users were their search queries and features for items
came from multiple sources (e.g Apps, Movies/TV etc.). This
makes it less adaptable by a news website as it requires a lot
of information outside the news domain.

III. DATASET

For this work we use the dataset published by CLEF
NewsREEL 2017. CLEF NewsREEL provides an interaction
platform to compare performance of different news recom-
mender systems in an online as well as in an offline setting
[16]. As a part of their evaluation for offline setting, CLEF
shared a dataset which captures interactions between users
and news stories. It includes interactions of eight different
publishing sites in the month of February 2016. The recorded
stream of events include 2 million notifications, 58 thousand
item updates, and 168 million recommendation requests. The
dataset also provides other information like the title and text
of each news article, time of publication etc. Each user can



be identified by a unique id. For our task, we needed to find
out the sequence in which the articles were read by the users.
Along with this we also find out the content of each of these
read articles. Since we rely only on implicit feedback we only
need to know whether the article was read by a user or not.

IV. MODEL ARCHITECTURE

In this section we discuss briefly the components of our
model. We first discuss user profiling, followed by the DSSM
architecture. We then provide the training criteria for our
model. Figure 1 illustrates the architecture of the proposed
model.

A. User Profiling

We first define a set of notations useful in understanding
the creation of user profile. We define the number of articles
in the user reading history to be R. The doc2vec embeddings
of each article in the history is represented by rh where 1 ≤
h ≤ R. Each vector is of size 300. The user profile for a user
is denoted by U . We now discuss three kinds of operations
using which we create the user profiles.

1) Centroid
In this method, we find the centroid of the embeddings
of the articles present in the reading history of the user.
The centroid then represents the user profile.

U =
1

R

R∑
h=1

rh (1)

2) Discounting
In this we first discount each of the vectors present in the
user reading history by a power of 2 such that an article
read at time t − 1 carries half the weight compared to
an article read at time t. We then take an average of all
the vectors.

U =
1

R

R∑
h=1

rh
2R−h

(2)

3) Exponential Discounting
In this we discount each of the vectors present in the
user reading history by a power of e such that an article
read at time t − 1 carries 1/e the weight compared to
an article read at time t. We then take an average of all
the vectors.

U =
1

R

R∑
h=1

rh
eR−h

(3)

Figure 2 plots the exponential discounting function as well
as the function with a discounting factor of 2.

We experiment with different kinds of methods for creating
a user profile in order to understand the temporal patterns
present in the user reading history. The idea behind discounting
and exponential discounting is to give more preference to the
recently read articles and lesser preference to those read far
away in the past.

B. Deep Structured Semantic Model
The Deep Semantic Structured Model (DSSM) [7] was

proposed for the purpose of ranking. Essentially, DSSM can
be viewed as a multi-view learning model that often composes
of two or more neural networks for each individual view. In
the original two-view DSSM model, the network on the left
side was meant for query representation, whereas the networks
on the right side were meant for representing the documents.
The input to these networks could be of any arbitrary type like
letter-tri-gram in the original paper or bag of unigrams used
in [8]. Each input vector after that goes through a non-linear
transformation in the feed-forward neural network to output
an embedding vector, which is smaller in size than the input
vector. The learning objective of the DSSM is to maximize
the cosine similarity between the two output vectors. For the
purpose of training, a set of positive examples and randomly
sampled negative examples are generated in order to minimize
the cosine similarity based loss.

C. Modified DSSM
In this work, we modify the DSSM in the following ways.
1) Instead of using letter-tri-gram, we use the doc2vec

embeddings of each of the news articles as input.
2) The input to the left side of the model is the user

reading history R. The doc2vec embeddings of each of
the article present in the user reading history is passed
as inputs. A user profile is then computed using these
embeddings.

3) The input to the right side of the model consists of 1
positive instance (an article read by the user apart from
the articles already present in the user history) and n
negative articles. The n negative articles are randomly
sampled.

D. Learning
Typically in matrix factorization, to learn the model param-

eters, existing pointwise methods [17] [18] perform regression
with a squared loss. This is based on the assumption that obser-
vations are generated from a Gaussian distribution. However,
in [8] it has been shown that such a method does not tally well
when we have implicit data available to us. Also, in [19] it has
been shown that a ranking based objective function is more
suitable for the task of recommendation. Keeping these two
aspects in mind, we adapt the loss function used in DSSM [20].
We first compute the posterior probability of a clicked news
item given a user from the relevance score using a softmax
function as follows.

P (item+|u) =
exp(R(u, item+))∑
∀item exp(R(u, item))

(4)

where item+ denotes the item that was clicked by the user and
R() represents the inner product function. We then maximize
the likelihood of the clicked news items given the user with
the following loss function.

L(Λ) = − log
∏

u,item+

P (item+|u) (5)



Fig. 1: Model Architecture for the Modified DSSM. ⊗ represents the operation using which the user profile is created. The
left side of the model creates the user profile, while the right side of the model provides positive and negative instances for
training the model parameters. r1 . . . rR represent articles present in the user history. item+ and item− represents the positive
and negative instances respectively.
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Fig. 2: Graph for the discounting functions used

where, Λ represents the parameters of our model.

V. EXPERIMENTS

In this section we delineate our conducted experiments in
order to answer the following questions.

1) How do the different profiling methods help in improv-
ing the overall recommendation?

2) How does our model perform against state-of-the-art
methods?

3) How well does our model perform when the user has
not had many interactions with the items, i.e., for users
who have read very less number of articles?

4) How well does our model perform in recommending
items which have not had any interaction by any user
(item cold start problem)?

A. Experimental Settings

As mentioned earlier, we use the dataset provided by CLEF
NewsREEL 2017. We extract the sequence in which the
articles were read by the users. For each article we concatenate
the body and the text and use gensim [21] to learn doc2vec
[22] embeddings for those. The size of the embeddings is set
to 300. In the given dataset, almost 77% of the users have
read less than 3 articles. We choose users who have read in
between 10–15 (both inclusive) articles for training and testing
our model for item recommendation. The frequency of users
who have read more than 15 articles varies extensively and
hence we restrict ourselves to the upper bound of 15. We then
choose users who have read 2–4 articles for testing our model
for the case when the user has had very little interaction with
the items (user cold start problem). For the item cold start
problem, we test it on users who have read in between 10–15
articles.

1) Evaluation Protocol To evaluate the performance of the
recommended item we use the leave-one-out evaluation
strategy which has been widely adopted in literature
[23] [19] [24]. For each user we held-out her latest
interaction as the test set and utilized the remaining
data for training. Since it is time consuming to rank



K Avg Discounting Exponential Discounting
HR@K NDCG@K HR@K NDCG@K HR@K NDCG@K

1 0.447 0.447 0.474 0.474 0.445 0.445
2 0.635 0.566 0.644 0.581 0.628 0.561
3 0.710 0.603 0.711 0.615 0.703 0.598
4 0.744 0.618 0.744 0.629 0.740 0.614
5 0.769 0.627 0.767 0.638 0.764 0.623
6 0.784 0.633 0.785 0.644 0.780 0.629
7 0.798 0.637 0.798 0.648 0.793 0.633
8 0.810 0.641 0.810 0.652 0.806 0.637
9 0.819 0.644 0.821 0.655 0.816 0.640

10 0.830 0.647 0.830 0.658 0.826 0.643

TABLE I: Performance of our model using different user profiling operations

all items for every user during evaluation, we followed
the common strategy [8] [4] that randomly samples
100 items that the user has not interacted with, and
then ranking the test item among the 100 items. The
performance of a ranked list is judged by two metrics:
Hit Ratio (HR) and Normalized Discounted Cumulative
gain (NDCG) [20]. We truncated the rank list at 10 for
both metrics. As such, the HR@k intuitively measures
whether the test item is present in the top-k list, and the
NDCG accounts for the position of the hit by assigning
higher scores to hits at top ranks. We calculated both
metrics for each test user and reported the average score.

2) Baselines
• BPR [24]. This method optimizes the matrix factor-

ization method with a pairwise ranking loss, which
is tailored to learn from implicit feedback. We
report the best performance obtained by varying the
learning rate.

• eALS [19]. This is a state-of-the-art matrix factor-
ization method for item recommendation. It opti-
mizes the squared loss (between actual item ratings
and predicted ratings) and treats all unobserved
interactions as negative instances and weighting
them non-uniformly by item popularity.

• NeuMF [5]. This is a state-of-the-art neural matrix
factorization model. It treats the problem of gener-
ating recommendations using implicit feedback as a
binary classification problem. Consequently it uses
the binary cross-entropy loss to optimize its model
parameters.

Our proposed method is based on modeling user-item
relationship, hence we mainly compare it with other
user-item models only. We leave out the comparison
with other models like SLIM [15] and CDAE [25]
because these are item-item models and hence perfor-
mance difference may be caused by the user models for
personalization.

3) Parameter Settings We implemented our proposed

method using Keras [27]. As mentioned earlier, for each
user who had read in between 10-15 (both inclusive)
articles we held out the last read article for our test set.
We then construct our labeled set as follows.

a) We first define the reading history that we want to
use. We denote the reading history by R.

b) For each user, we use R number of read articles
as inputs to the left side of the model. Leaving the
last read article out, the remaining articles are used
as positive samples for the right view of the model.

c) For each positive instance of a user, we randomly
sample n negative instances (news items that the
user has not interacted with) which are used as
inputs for the item view of the model. We experi-
mentally set the number of negative instances n to
be 4.

We then randomly divide the labeled set into training
and validation set in a 4:1 ratio. This helps us to ensure
that the two sets do not overlap. We tuned the hyper-
parameters of our model using the validation set. The
model and all its variants are learned by optimizing
the log loss of Equation 5. We initialize the fully
connected network weights with the uniform distribution
in the range between −

√
6/(fanin + fanout) and√

6/(fanin + fanout) [17] . We used a batch size of
256 and used adadelta [26] as a gradient based optimizer
for learning the parameters of the model.

B. Performance Comparison

From Table 1 we can see the performance of our model
when using three different kinds of methods for user profiling.
We observe that the Discounting based method for user
profiling had better results in terms of HR as well as NDCG
in most of the cases. One of the main reasons for this could be
that, since discounting gives more weight to the recently read
articles, it adapts to the user’s temporal changes in interests
in a better fashion.
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Figure 3 and Figure 4 show the performance of the Top-
K recommended lists where the ranking position K ranges
from 1 to 10. We leave out the variants of our own model
here for comparison and only use the best performing model,
i.e., the discounting based model. From the figures, it can be
clearly seen that our model shows consistent improvements
over the other methods across all positions. The reason for
this can be attributed to the fact that apart from accounting
for the user’s general preferences we also account for the
users changing interests and the extent of those interests which
the baselines do not incorporate directly. Although, our model
shows significant improvements in terms of HR when K varies
from 1 to 5, slowly the performance of the baselines become
similar to that of our proposed method when K is 10.

We observe major improvements in the NDCG scores of
our model. There is an approximate 20% improvement over
NeuMF. The reason for this is the loss function of Equation 5
used by our model. The loss function which is optimized for
ranking, helps the model to recommend a better ranked list of
items. There is however no significant difference between the
performance of the baselines.

We then evaluated our model for the cold start cases. The
results are shown in Figure 5 and Figure 6. For this task we
segregated users who had read a new article in the end, i.e.,
they read articles which had never been seen before they read
it. We found out that the number of such users were 74. Out
of these 74 users, at an HR@10 we observe that around 33%
of the time we were able to recommend that article. This
promises us that our model is well suitable for handling the
item cold-start problem. For user cold-start, we test our learned
model over users who had read articles in between 2 to 4
(both inclusive). The HR@10 score was around 47%. We see
a gradual increase in the hit rates as we increase the value of
k. The results promise the efficiency of our model to handle
the problem of user cold start as well.
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Fig. 4: NDCG@K performance of our model vs some state-
of-the-art models
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Fig. 5: HR@K of our model on Cold-Start cases

VI. CONCLUSION AND FUTURE WORK

In this work, we tackle the problem of changing users’
interests by first coming up with a user profile and then using
it to learn the parameters of DSSM. This method can be
considered similar to that of user-item collaborative filtering,
the only difference being that, we account for the content of the
items as well. The content-embeddings help us in generalizing
the user preferences. We then also show the effectiveness of
our model in recommending articles to users who have a very
small reading history. The success of this prompts us towards
the observation that content is very relevant in modeling user
preferences even when the user has a very low reading history.
Next, we also show that our model is very effective in solving
the item cold-start problem as well.

For future work, we would like to experiment with neural
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networks which are able to dynamically capture the temporal
changes in user behaviour. This would probably help us
to come up with better user profiles and help make the
performance of the model even better.
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